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Abstract
Password Stealers (Stealers) are commodity malware spe-
cializing in credential theft. This work presents a large-scale
longitudinal study of Stealers and their operators. Using a
commercial dataset, we characterize the activity of over 4,586
distinct Stealer operators through their devices spanning ten
different Stealer families. Operators heavily use proxies, in-
cluding traditional VPNs, residential proxies, mobile proxies,
and the Tor network, when managing their botnet. Our affilia-
tion analysis unveils a stratified enterprise of cybercriminals
for each service offering, and we identify privileged operators
using graph analysis. We find several Stealer-as-a-Service
providers that lower the economic and technical barrier for
many cybercriminals. We estimate that service providers ben-
efit from high-profit margins (up to 98%) and a lower-bound
profit estimate of $11,000 per month. We find high-profile
targeting like the Social Security Administration, the U.S.
House of Representatives, and the U.S. Senate. We share our
findings with law enforcement and publish six months of the
dataset, analysis artifact, and code.

1 Introduction

The impact of credential theft is inescapable. Verizon’s 2020
Data Breach Investigations Report finds credential theft to ac-
count for over 80% of breaches [1]. More concerning, the
stolen credentials are resold on the underground markets
to cyber-criminal groups with unknown motives [2], [3]. In
one instance, ransomware attacks leveraged stolen credentials
from Stealer malware to obtain access to their target network
and ransom critical services [4]. Given these factors, studying
the Stealer ecosystem and their operators can help security re-
searchers and law enforcement understand the nature, trends,
and tactics of this rampant threat.

Prior works cover different facets of the underground
economies by studying phishing [5], keyloggers [6], exploit
kits [7], spam botnets [8], [9], and social network abuse [10].

*Authors contributed equally.

Additionally, researchers have uncovered misconfigured drop-
zones [6], taken over botnets [11], and seized command-and-
control (C&C) infrastructure [9] to further understand how
malware operators conduct their business [12]. More active
approaches even include hiring cybercriminals from under-
ground forums to attack honey accounts so researchers can
empirically document illicit services [2]. A prime commod-
ity for malware operators in many of these diverse attacks is
credential theft [13].

Prior studies provide fascinating insights into the under-
ground markets, which motivates us to study the role of
Stealers. However, the security community has not thor-
oughly investigated how cybercriminals manage, operate, and
profit off of Stealers. On the other hand, technical blogs pro-
vide anecdotal insights about how Stealers operate, but they
only focus on specific attack instances and lack deep analysis
of their economies, service offerings, and victim targeting.
Understanding the nature and tactics of Stealer operators can
aid researchers in developing better defenses. In addition,
law enforcement can leverage the insights to prioritize their
resources when pursuing Stealer operators [14]–[16].

This work examines a unique dataset that tracks ten dis-
tinct Stealer families and their operators. We partnered with
MalBeacon, a threat intelligence company, to study the ac-
tivities of Stealer operators that span 20 months (Apr 2019
- Dec 2020). We use this dataset and other sources to under-
stand the trends, nature, tactics, and service offering revenue
of Stealers and their operators. These insights can help law
enforcement pursue cybercriminals more effectively by tar-
geting the operator’s tactics and revenue streams. In summary,
we seek to answer the following research questions:

• RQ1: How do Stealers contribute to cybercrime?

• RQ2: How do Stealers operate on the Internet?

• RQ3: What are the nature and tactics of Stealer opera-
tors and their service offerings?

In answering these questions, we make the following contri-
butions: i) analyze the source code of leaked Stealer kits and
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document their features and offerings as advertised in under-
ground forums, ii) formulate and characterize the operator
activities by implementing and evaluating a clustering algo-
rithm that resolves unique entities of the operator’s device for
cookie churn, iii) conduct measurements of Stealer hosting
and victims on the Internet, and vi) empirically investigate
Stealer service offerings and estimate their profit margins.

Our analysis of the leaked Stealers source code shows that
they offer a wide range of functionality, including DDoS, key-
logging, dropper, reverse shell, and screenshot capabilities.
Hosted Stealer services require little upfront cost and can
offer a large return on investment from the resale of creden-
tials. The hosting infrastructure requires minimal resources,
and operators often abuse free infrastructure services like
country code top-level domains (ccTLD) and cloud-fronting.
Our estimates show that Stealer services enjoy profit margins
between 81% and 98%. Moreover, a lower bound estimate
shows that the highest netting service provider profits approx-
imately $10,910.55 per month. Unfortunately, we find newly
registered Stealers domains to appear on public blocklists on
an average of 74 days after registration. The detection lag can
allow operators time to exercise other malware capabilities
(i.e., install ransomware [17]).

Although we find that the highest Stealer activities appear
to originate from Nigeria, Stealer operators rely heavily on
proxy networks to masquerade their real IP addresses. When
profiling the operators, we find that operators use proxy ser-
vices ranging from traditional VPNs to mobile and residential
proxies to Tor networks, where the mobile and residential
proxies can be harder to identify. We also find operators have
varying privileges and access, forming a stratified organiza-
tion for Stealer services. Our targeting analysis identifies
sensitive government networks with potential Stealer infec-
tions, including the U.S. Social Security Administration, the
U.S. House of Representatives, and the U.S. Senate. We have
shared our findings with law enforcement and discuss the eth-
ical considerations in Section 4. Our paper accompanies six
months of the Stealers dataset and the implementation code
to foster reproducibility and transparency1.

2 Background: Stealers & Cybercrime

Stealers are specialized commodity malware that harvest cre-
dentials from infected hosts. Stealers utilize many attack
vectors, including drive-by download, application repackag-
ing, remote exploitation, social engineering, and phishing.
However, security reports [18]–[20] show that business email
compromise (BEC) attacks are the most widespread infection
vector. Upon infection, Stealers harvest the operating system
(OS) information, the system’s settings, the user’s profile, and
stored credentials. These credentials belong to applications
and services, including websites (browser-stored passwords),

1https://github.com/Astrolavos/stealer-sec23

remote management tools (FTP clients), and messenger ap-
plications. Furthermore, Stealers can steal cryptocurrency,
install keyloggers, exfiltrate files, and drop other malware.
Note that Stealers target stored credentials while keyloggers
log keystrokes, which may include credentials. In summary,
Stealers specialize in credential theft but may overlap in their
features with remote access tools (RATs), spyware, download-
ers, worms, and ransomware.
Credential Theft Lifecycle. There are four phases in the
credential theft lifecycle [21]. In the first phase, cybercrimi-
nals harvest credentials through various channels, including
phishing [5], social engineering, data breaches, and Stealers
(malware) [13]. In the second phase, cybercriminals sort cre-
dentials like email, social network, financial, and corporate ac-
counts. In phase three, automated tools verify the credentials
to ensure a high-quality batch. In phase four, the credentials
are sold to other cybercriminals. The pricing for each type of
credential varies from $1.50 up to $9.
Cybercriminal Roles. Within the Stealer enterprise, there
are varying roles ranging from low to high technical compe-
tency. Figure 1 depicts this relationship. We identify three pri-
mary roles: developers, service providers, and operators [21].
Developers are the most technical and responsible for writ-
ing the Stealer code. The next tier is service providers, who
typically buy a license from developers to offer Stealer as a
service. The service providers can be the developers them-
selves or other cybercriminals who may be less technical
(non-developers). Developers are incentivized to sell their
Stealer malware licenses to increase their revenue and mar-
ket share. Lastly, Stealer operators can be the developers,
the service providers, or other cybercriminals. Less techni-
cal cybercriminals may use Stealer-as-a-service offering to
participate in the credential theft ecosystem. Note that highly
technical cybercriminals can assume all three roles, while less
technical cybercriminals can assume only the operator role.

Table 1: A list of top password stealers found in our dataset.

Family First Price Leaked Panels Hosts
Sold (N = 5,295) (N = 2,602)

LokiBot [22] 2015 $80-$300 3 3,613 (68.23%) 1,952 (75.01%)
Formbook [23] 2016 $29-$299 1,195 (16.62%) 285 (5.32%)
Amadey [24] 2018 $600 3 56 (1.05%) 44 (1.70%)
Baldr [25] 2019 $100-$150 32 (0.6%) 32 (1.22%)
Blacknet [26] 2019 Open Source 12 (0.22%) 12 (0.46%)
AZORult [27] 2016 $100 3 8 (0.15%) 8 (0.31%)
Neutrino [28] 2013 $200-$500 3 9 (0.17%) 8 (0.31%)
Agent Tesla [29] 2014 $12-$69 5 (0.09%) 5 (0.19%)
Nexus [30] 2020 $100 5 (0.09%) 5 (0.19%)
KPOT [31] 2018 $85 2 (0.03%) 2 (0.08%)

Stealer Management Interface. Stealers have two main
components: the bot program and the management interface.
The management interface for Stealers can be implemented
as a web or desktop application. This work focuses only on
Stealers with web-based management interfaces. While there
are other popular Stealer malware families with desktop man-
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the Stealer ecosystem.

Stolen Data

Infected System

Pixel Server

Activity Log

C&C InterfaceStorage

Panel Interface

Pixel Req.

1

3

6

2

7 8

C&C ServerNetwork
Proxy/VPN

Tor

Direct4 5

Operator

DEVICE

Figure 2: An overview of Stealer data collection.

agement interface (i.e., Redline [32]), they are out of scope.
Table 1 documents the Stealer family name, first advertised/-
sold year, the offering price, leaked source code, and counts
found in the Stealers dataset. We manually analyze the source
code for the open-source and leaked Stealer kits. We assess
the technical barrier to entry and the capabilities of Stealers
through the installation method, encryption functions, panel
authentication, and malware control. All analyzed panels are
built with PHP, HTML, and JavaScript, and their core function-
ality focuses on credential theft. The panels use SQL-based
databases to store information about the bots and stolen data.
Table 9 in Appendix A summarizes the source code analy-
sis for the leaked Stealer panels. Panel setup can be manual,
scripted, and guided, which vary in technical difficulty.

For authentication, AZORult only requires a password for
login, whereas LokiBot checks the username, password, user-
agent, and captcha. LokiBot uses a captcha and randomizes
the admin panel login path to make it harder to find. BlackNet
allows users to enable 2FA using Google Authenticator as
an additional layer of security. Neutrino bans IP addresses
that attempt to enumerate files on the C&C. Stealers use
varying degrees of defense to hide from internet scanners.
Stealers provide numerous functions (bot commands), in-
cluding DDoS, DNS spoofing, download or load executable
(load/drop), shell command, open a browser and visit a page
(visit page), screenshot, message (msg) victim, and keylogger.
From Table 1, we can see offerings as low as $12 per week,
which lowers the technical and financial barrier required for
any cybercriminal to participate.

Takeaway-1: Stealers contribute to the credential harvest-
ing phase. Stealers have a mature and competitive market
that lowers the financial and technical barrier and caters to a
wide range of cybercriminals. Hosted Stealer services require
little upfront cost and can offer a large return on investment
from the resale of credentials.

3 Data and Methodology

In collaboration with MalBeacon, we had initially set out to
answer our research questions and gain insights that can help
researchers develop better defenses (detection and prevention)
and aid law enforcement in pursuing cybercriminals more

Table 2: A list of data sources used in this study.

Dataset Description Source

Stealers Stealer tracker MalBeacon

Active DNS Domain reg./resolution ActiveDNS Project [33]

Passive DNS
Recursive and authority
domain lookups

US ISP, Global Recursives,
Nameserver Authority, TLD Authority

Threat Intelligence Malware and domain intel.
URLScan [34], VirusTotal [35]
IP Reg. [36], bot tracker [37]–[39]
residential and mobile proxies [40], [41]

Table 3: Stealer dataset fields summary.

Field Name Description Unique

Timestamp
The time a tracking event was
observed. 202,538

IP Address IP address used by the operator
to access the panel server. 21,812

User-Agent User-agent string associated
with the operator’s device. 1,484

Cookie ID A session identifier set by the
tracker for the operator’s browser. 5,552

Panel Web
Address

The referrer field sent to the
tracker. 27,823

effectively (deterrence). Unfortunately, the Stealer dataset
alone does not allow us to explore these questions thoroughly;
therefore, we must augment the dataset with external data
sources. We rely on DNS and threat intelligence. The DNS
dataset characterizes DNS records, volumetrics, and client
resolutions. The threat intelligence datasets enrich, validate,
and identify additional artifacts of malicious infrastructure.
Table 2 summarizes our data sources.

Scope. Our work investigates the harvesting phase of the
credential theft lifecycle. The resale and distribution of the
credentials throughout the underground forums or other illicit
markets are out of scope. Specifically, this work studies one
harvesting channel, namely Stealer malware, their Stealer
operators, and the service providers, which we highlight with
a dotted box in Figure 1. Readers can refer to prior works [2],
[5], [9], [12], [13], [18] on credential theft profits.
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3.1 Data Sources

Stealers Dataset. MalBeacon, a threat intelligence company,
provided us access to their commercially available Stealers
dataset. MalBeacon tracks many Stealer families, which are
listed in Table 1. In our initial analysis, we noticed a skew-
ness in the dataset that can potentially be attributed to the
malware’s (Lokibot, Formbook, AZORult) popularity in the
wild [23], [27], [42], limitation of the data collection pro-
cess, or a combination of both. MalBeacon uses a proprietary
pixel-tracking technique, similar to email marketing, embed-
ded into artificial credentials, documents, and other sensitive
information that Stealers target. When the operator views the
stolen information, the browser will request the embedded
pixel from MalBeacon’s server and reveal information about
their device (IP address and user-agent).

Figure 2 is an overview of how MalBeacon collects the
Stealer dataset. Step ¶ the Stealer infects a system and sends
stolen artificial data with the embedded pixel (·) to the C&C
server, which is committed to the backend storage (¸). Next,
when the operators use their device (¹) to connect to the
C&C server (º), they log in to the management panel (»),
where the embedded pixel gets rendered (¼). Before the pixel
can render, the operator’s browser will connect to the pixel
server (½) to retrieve the pixel. The pixel server logs the
HTTP request from the operator’s browser into an activity log
database and generates a unique random long-lived cookie
ID that is sent back in the response header. Any subsequent
requests by the operator would include the cookie ID, which
enables tracking operators across different panels. Table 3
summarizes the dataset fields and their counts.

MalBeacon did not disclose the proprietary implemen-
tation details for their system, but we demonstrate how
to collect a similar dataset using the approach found
in Nachum et al. [43]. In brief, Nachum et al. mod-
ify stolen system artifacts by inserting an HTML im-
age tag alongside the original in the following for-
mat: Original Value + Image Tag, i.e., “DESKTOP-
UU1KCDG<img/src=//domain.tld/name.gif>.” When the
stolen artifacts are rendered in the HTTP panel interface
(C&C), the operator’s browser will callback to the image host-
ing server, and the hosting server will log the IP address,
user-agent, and HTTP headers. To test this hypothesis, we
implemented the system found in Nachum et al. and tested
five Stealer malware families (Amadey, Azorult, BlackNet,
LokiBot, and Neutrino) for the following browsers: Chrome
96.0.4664.45, Firefox 94.0.2, and Edge 95.0.1020.44. We col-
lected the same fields (IP address, user-agent, HTTP header)
by using a Windows 10 virtual machine and hooked system
calls to modify values such as the IP address (Amadey, Neu-
trino), Computer Name (Azorult, BlackNet), Global Unique
Identifier (Lokibot) and Bot Name (Neutrino).

We can utilize additional fields to insert the pixel code, but
we leave that for future work. We induced a pixel callback

and cookie ID persistence for all families across all three
browsers. When testing with private browsing, we observe
that the cookie IDs are cleared after each session. Our test-
ing found that privacy features on modern browsers trim the
entire referrer field. Specifically, we observed that starting
with Firefox 87 and Chrome 89, the path and the query string
information of the referrer field are missing [44]. The privacy
feature impacts the future collection of similar datasets and
limits our cookie merging and malware labeling methodology.
However, this work collected the Stealers dataset before the
browser privacy change (March 2021).
DNS Datasets. We use the aDNS from the ActiveDNSPro-
ject [33]. The project resolves over 1,100 zones and includes
resolutions for Alexa’s Top 1M and public blocklists. Each
domain is resolved two times during 24 hours. We use aDNS
to investigate Stealer infrastructure by enumerating relation-
ships between observed IPs and domains. Furthermore, we
use three passive DNS (pDNS) datasets from a US-based in-
ternet service provider (ISP), geographically distributed local
and global DNS resolvers, and an authoritative nameserver
responsible for several zones and a top-level domain (TLD)
authority. The pDNS datasets are anonymized to exclude
any customer-related information. We use pDNS to amplify
the coverage of the stealer domain resolutions and estimate
potentially infected networks resolving the stealer domains.
Combining these datasets, we get global visibility from over
80 million internet-connected devices.
Threat Intelligence Datasets. We use eight threat intelli-
gence sources, namely URLScan [34], VirusTotal [35], IP
Registry [36], residential and mobile proxy dataset [40], [41],
and botnet trackers [37]–[39]. URLScan implements a web-
site scanning engine to analyze JavaScript, HTML, and em-
bedded content to detect malicious code. VirusTotal (VT) is
a threat-sharing platform used by hundreds of commercial
companies and thousands of security researchers to share
malicious indicators. IP Registry is an IP intelligence ser-
vice that collects and correlates data from partner networks
and public sources like BGP tables, regional internet registry
databases, internet service provider data, geofeeds, and latency
measurements. The data covers 99.9% of the IPv4 space but
excludes loopback, link-local, multicast, private, site-local,
and wildcard IPs. The botnet trackers use open-source threat
intelligence to track C&C servers. The residential and mobile
proxy datasets are sourced from an academic study [40], [41]
that includes 6.42M residential IPs collected between May
2017 and February 2018 and 8M mobile proxy IPs collected
between April and August 2019.

3.2 Data Validation
The raw pixel server logs contain HTTP request records where
each record has a timestamp, the source IP address, and the
HTTP header. MalBeacon processes the HTTP headers into
three fields: user-agent (UA), cookie ID, and refer field. The
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final dataset format is a JSON file that contains the fields in
Table 3. Our initial analysis of the Stealer dataset aims at
validating the dataset by inspecting the consistency of user-
agents, the persistence of cookie IDs, the identification of
C&C instances, and the labeling by malware families.

User-Agent Validation. We analyze the number of unique
browsers and operating systems per cookie ID to investigate
if the UA strings are potentially spoofed. If UA spoofing
were present, the browser and operating system of the UA per
cookie ID would change. We found six (0.01%) cookie IDs
with more than one unique browser and 25 (0.45%) with more
than one operating system. Manual inspection of those records
reveals six cookie IDs with multiple versions of the Windows
OS, four cookie IDs with multiple versions of macOS, and 12
cookie IDs with other operating systems (Linux and Android),
which suggests potential UA spoofing.

On the other hand, 99.55% cookie IDs have only one op-
erating system and browser, with 73.23% having only one
browser version. The rest change their browser version, but
they are consistent with the release of browser updates. For
example, 50% of the devices update their browser within 21
days or sooner, and 75% update their browser version within
41 days or sooner. However, a set of records from Firefox have
versions before the update release, which can indicate spoof-
ing or beta/early testing. Those UAs were associated with
145 cookie IDs and 6,068 records. In total, the potentially
spoofed UAs account for 6,243 (3.0%) records associated
with 170 (3.0%) cookie IDs. We discard those records when
we perform operator device measurements.

Table 4: Top 10 user agents and related statistics.

OS Browser Cookie IDs C&C Update (Days)

Windows 7 Chrome 75.0.3770.100 116 119 22.50
Windows 10 Chrome 79.0.3945.130 112 110 24.15
Windows 10 Firefox 68.0 112 140 36.32
Windows 10 Firefox 69.0 111 113 47.23
Windows 10 Chrome 75.0.3770.142 109 120 53.54
Windows 10 Chrome 75.0.3770.100 108 122 21.74
Windows 10 Chrome 73.0.3683.103 95 88 28.57
Windows 10 Chrome 74.0.3729.169 88 109 22.31
Windows 10 Firefox 70.0 82 96 24.95
Windows 7 Chrome 75.0.3770.142 80 72 17.46

Lastly, we analyze the top 10 UAs in the dataset and present
the results in Table 4. We group by OS and browser and
count the associated cookie IDs, C&C, and the average days
between a browser update release and a UA change. The most
popular OS is Windows, and the most popular browsers are
Chrome and Firefox. We found, on average, 1.25 cookie IDs
are associated per C&C, while 75% of the C&C instances are
associated with a single cookie ID. Although these statistics
imply that the overwhelming majority of the UAs are not
spoofed, an operator can still spoof the most popular UAs to
masquerade their actual device fingerprint. This is an artifact
limitation that we can not verify from the dataset. Realistically,

an operator must know the most popular UAs in use with a
particular C&C panel to spoof a popular UA.

Cookie ID Persistence. We refer to the ephemeral cookie
IDs as cookie churn, where a device is assigned multiple
cookie IDs over time because they are not persistent. We find
the ratio of cookie IDs per C&C panel to be, on average, 1.59
with a median of one and a maximum of 67, which implies that
cookie churn is present in a subset of the dataset. We address
the cookie churn problem by applying a similar technique
to the work of Dasgupta et al. [45]. Briefly, Dasgupta et al.
address cookie churn for user-modeling and reach-frequency
in the context of online advertisement. User-modeling refers
to estimating how many users visit a particular site (users per
C&C panel), whereas reach-frequency refers to how often an
individual user visits a particular site. Our study focuses on
user-modeling to address the cookie churn problem.

We use the OS, browser, and panel URL as device pro-
files. In addition, we use two cannot-link constraints, namely
cookie lifespan overlap and browser version. Cannot-link con-
straints are logical constraints that can disambiguate distinct
but similar device profiles. For example, the cookie ID’s lifes-
pan interval (last seen - first seen) cannot overlap. If two
device profiles use Windows 10 and the Chrome browser, but
the lifespan of their cookie IDs overlaps, then we assume that
they are distinct since they access the same C&C from similar
devices but use different cookies. The browser version con-
straint merges cookie IDs if and only if the browser version in
later records is greater than or equal to the browser versions
in earlier records per C&C panel.

We design and implement Algorithm 1 to analyze and
reconcile multiple cookie IDs belonging to the same device.
The input takes a set of C&C panels and retrieves a set of
devices that access the panels (line 2). A device is a tuple of
UA string and cookie ID, where the UA is parsed for the OS,
browser, and browser version. Once we have a set of devices
(D), we group the records by the OS and browser and sort
them by the first seen date (lines 3 and 4). For each group
(g), we iterate through the cookie IDs and either allocate
a new cluster (line 9) or merge on the profile features and
cannot-link constraints (line 16). Since we lack the ground
truth to evaluate the accuracy of Algorithm 1, we define an
error metric called ambiguous merge error to quantify missed
merges. Our merge policy coalesces cookie ID candidates
with the earliest cluster (first seen), and therefore, the metric
captures how many other clusters the candidate cookie ID
could have merged with.

We calculate the ambiguous merge error (AME) using the
following formula: AME = |collision|

|gi.GetClusters()| . Specifically, we
calculate the AME per group (gi) since the merge error can
only occur when the profile features and cannot-link con-
straints are met for more than one cluster per group. We found
872 groups with at least two cookie IDs. We skip groups with
one cookie ID since they cannot be merged. Out of the 872,
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Algorithm 1: Merge device’s cookie IDs.
Input: A set of unique C&C (C2)
Result: Merged Cookie ID Clusters

1 Merged←{}
2 D← GetAssociatedDevices(C2)
3 G← Group(D , by=[OS ,Browser])
4 for g in G.sortAsc( f irstSeen) do
5 for i=0 to g.size do
6 if gi in Merged
7 continue
8 Merged.addNewCluster(gi)
9 for j=i+1 to g.size do

10 for c in Merged.GetClusters() do
11 if g j.li f espan not overlap c.li f espans
12 and |g j.C2∩ c.C2| ≥ 1
13 and g j.browser_ver ≥ c.browser_ver
14 MergeWithCluster(c , g j)

15 return Merged
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Figure 3: Distribution of AME per top largest group.

we detected merge misses in only 29 groups. Furthermore,
19 out of the 29 groups with merge misses are in the top 100
largest groups. The largest AME value is 1.22, which indi-
cates that the merge is ineffective, i.e., merge error over 100%.
This merge error belongs to the 89th largest group, which had
nine unique cookie IDs and 11 possible merge combinations
(ambiguous merges).

We discard groups with large AME values (more than 0.20)
for the analysis. We summarize the distribution of AME for
the largest top 10, 100, and all groups in Figure 3. Eight
out of the ten largest groups have less than 0.1 AME rate.
Additionally, five out of the ten largest groups have a 0.0
AME rate, which gives us confidence in the results since
these groups have many cookie ID nodes. For example, group
two has 68 unique cookie IDs and a merge collision count of
0. Beyond the AME metric, we manually inspected the top
100 groups to ensure that Algorithm 1 correctly coalesced
cookie IDs and accounted for merge misses.

C&C Instance Identification and Labeling. The Stealer
dataset does not contain any malware family labels or panel
instance distinction, which makes our analysis challenging.
Identifying and labeling the panel instances is essential for

Stealer Panel 
Source Code

<?php
$LINK_Report = "?" . ACTVALUE_ . 
"=report&"   . OPTVALUE_ . 
"=view&id=";
$LINK_Delete = "?" . ACTVALUE_ . "=" 
. $Action . "&" . OPTVALUE_ . 
"=flush&rid=";

php?>

Malware Tracker

Extract URL 
Patterns &

Labels

$LINK_Report = "?" . 
$ACTVALUE_ = "=report&"
$OPTVALUE_ ="=view&id="

Create Regex
Fingerprint

Fingerprint & Malware
Family Label Database

Stealers Dataset

Apply Labels1
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4

Figure 4: Panel signature generation and identification.

us to discern between different malware families and hosting
infrastructure. We perform three labeling tasks: identification
of panel instances, panel malware families, and panel dynamic
DNS domains. A single host can serve multiple panels. We
define a panel instance (Π) by the domain or IP address (δ)
and URL path (ρ). More formally, Π = {δ,ρ} where the δ

can be a domain or an IP address and ρ is the URL path
starting from the domain/IP to file name and extension (γ).
For example, the following illustrates the components of a
panel URL address:

http://domain.tld/path/file.ext?param=1

δ

ρ

γ

We label records that do not contain URL paths as unknown
and exclude them. Next, we assign a malware family label to
the panel instances. We rely on the panel’s URL components,
such as the path (ρ), file name and extension (γ), and param-
eters. We manually create Stealer family label signatures
based on leaked source codes and panel tracker services [37]–
[39]. Figure 4 presents our labeling process. In step one (¶),
we extract URL patterns and labels from our source code
and panel trackers. Next (·), we use the strings and their
order to generate a fingerprint for each Stealer family. In step
three (¸), we store the signatures and the family labels in
the database. Finally, in step four (¹), we label the panel in-
stances based on the derived signatures. The signatures are in
the form of regular expressions. From the 202,538 records in
the Stealers dataset, 15,237 (7.5%) are associated with 357
(6.7%) panel instances with unknown labels. We attempted
to use the AV labels from the malware files associated with
each panel instance; however, we found them unreliable and
noisy [46]. For Effective Second-Level (E2L) Dynamic DNS
domains (DDNS), we manually verify them to ensure there
are no false positives, and we use pDNS to identify domains
with 50 or more subdomains.
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3.3 Affiliation Modeling and Analysis

We model the operator devices and C&C panel interactions
as a bipartite undirected graph G(V,E) and perform link anal-
ysis to identify business affiliations. We create a vertex for
each operator device (Di) and panel (Π j), i.e. D,Π ∈V . We
construct edges (e ∈ E) between vertices for each record in
the Stealer dataset. Next, we extract connected components
(subgraphs) from the global graph. We calculate the operator
device (Di) centrality in the subgraph using eigencentrality
for each connected component.

Eigencentrality measures the influence of a node in a graph.
Intuitively, the eigencentrality value is calculated based on
connections to other high-scoring nodes. Since the bipartite
graph has only edges between different node types (operator
and panel node), the operator device node’s eigencentrality
will be calculated based on the collective scores of all neigh-
boring panel nodes. An operator will have a relatively larger
eigencentrality value (influence) if associated with more panel
nodes in a connected component. We calculate the eigencen-
trality using the adjacency matrix of a graph A = (ai, j), such
that the eigencentrality xi of node i is:

xi =
1
λ

∑
k

ak,i xk

where λ 6= 0 is a constant. We calculate λ from the largest
eigenvalue associated with the eigenvector of the adjacency
matrix A, such that

λx = Ax
Lastly, we treat each connected component as a potential
Stealer service provider, and the most influential operator
devices (highest eigencentrality) are most likely the service
administrators. We base this assumption on the conjuncture
that the influential operator device nodes have privileged ac-
cess to many panels, but the service customers do not have the
same access. In summary, the bipartite connected component
and eigencentrality are meant to identify service providers,
associated infrastructure, and customers of the service.

4 Ethical and Legal Considerations

We take our ethical and legal responsibility seriously and
ensure our study does not violate widely accepted norms.
Our institute reviewed our request for an IRB and concluded
that we do not require an IRB review. We also presented our
study to the institute’s Office of Cybersecurity for compliance,
and they had no concerns. This study uses data collected by
MalBeacon, a US-based commercial company that operates
and adheres to the Computer Fraud and Abuse Act (CFAA).
The collection technique does not actively scan, exploit, or
social engineer the malware operators in any way, and an ex-
ternal legal review committee reviewed malbeacon’s tracking
method and deemed it compliant with the Computer Fraud
and Abuse Act (CFAA) and the Directive on attacks against
information systems. The approach relies on honey tokens

that many prior works use [47]–[53], which date back to 2004.
Moreover, our dataset analysis follows the precedence of prior
works that study malware operator activities [6], [11], [54].

Research of criminal activity often involves deception or
clandestine research activity [55], [56], so requests for waivers
of both informed consent and post-hoc debriefing may be
relatively common as compared with research studies of non-
criminal activity. Support for such waivers is recommended
when the research involves no more than minimal risk to the
subjects, and the research could not be carried out without
the waiver. Deception is necessary for the Stealers dataset
to obtain data that characterizes the Stealer ecosystem. Such
studies are considered permissible when (1) the research ad-
dresses important questions of public concern, (2) the research
cannot be conducted if the subjects must provide consent, and
(3) involving subjects in the research without their permission
does not significantly compromise their autonomy. This study
meets all three criteria, and the scope follows well-established
Menlo guidelines. Furthermore, our study analyzes a com-
mercial dataset (passive observations) and does not directly
implicate any malware operators or cause direct harm.

Finally, the data contains no personally identifiable infor-
mation (PII). The IP address can be considered PII with addi-
tional auxiliary data, but not by itself. From a law-enforcement
perspective, an IP address can be subpoenaed from the ISP to
get PII information about the person leasing the IP address
at a given time. We do not have legal authority or access to
auxiliary information to identify individuals. Despite well-
established guidelines on deceptive studies and issues regard-
ing PII, we note that computer security research is more like
behavioral research because the risks typically are not phys-
ical and can be challenging to quantify. Although evidence
indicates that harm resulting from deceptive experiments is
minimal and transient, it is still incumbent upon us to identify
and minimize potential harm. We reiterate that we take the
responsibility seriously and ensure our study does not violate
ethical norms.

5 Analysis Results

To answer our second research question (RQ2), we study how
Stealers use internet infrastructure and analyze how Stealer
operators administer their botnets by characterizing their de-
vices, networks, and activities.

5.1 Stealers on the Internet
Our analysis of the Stealers public code shows that Stealers
require minimal hosting infrastructure. We further seek to
characterize Stealer hosting on the internet. Specifically, we
characterize the domains and hosting networks of Stealers,
quantify the detection delay between infrastructure setup and
blocklist detection, and assess the potential infections indi-
rectly through the DNS dataset.
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Internet Infrastructure. The Stealers dataset contains
2,187 registered domains, out of which 78 are DDNS and
web hosting domains, and 281 panel hosting IP addresses
for a total of 2,468 unique panel servers (hosts). This count
excludes the two bogon panel IP addresses and three popular
non-malicious domains in the Alexa top 100K [57]. Table 5
summarizes the top 10 top-level domains (TLD) count for
effective second-level domains (E2LD)s of the C&C panels.
For the panel domains, 41.4% use the COM TLD followed
by 19.0% that use free country code domains (ccTLDs) like
TK, ML, CF, and GA. Free ccTLDs are known to be heavily
abused by malware [58]. The right side of Table 5 summa-
rizes the top ten network names for the C&C panels, which
account for 70% of the hosts. About 30.9% use US-based
hosting (Cloudflare, Namecheap, and Unified Layer), 15.8%
use Russian-based hosting (Reg.ru, SelecTel, Mail.Ru, The
First, and IHOR-AS), and 12.2% use Chinese-based hosting
(Alibaba cloud and Tencent).

In Figure 5, we present the distribution of panels and as-
sociated malware files per host and panel, respectively. Note
that we differentiate between the host and the panel since
a host can serve multiple panel instances. We observe that
64% of the hosts serve a single panel, 26% of the hosts serve
between two and four panels, and 9.8% of the hosts serve five
or more panels; the largest host has 71 panel instances. We
find that 61.5% of the hosts have 10 or fewer malicious files
associated with them. The number of malware files per panel
and host has a maximum value of 43 and 249, respectively.

Table 5: Top 10 TLDs and hosting networks for panel hosting
server domains.

TLD Domain (%) Type Reg. Cost Network Domain (%)

COM 874 (41.5%) Commercial $8.38 CLOUDFLARENET 308 (14.1%)
GA 107 (5.0%) Country Code $0 NAMECHEAP-NET 263 (12.0%)
XYZ 105 (4.9%) General $0.99 CNNIC-ALIBABA-US-NET-AP 197 (9.0%)
ML 97 (4.6%) Country Code $0 UNIFIEDLAYER-AS-1 105 (4.8%)
INFO 94 (4.4%) Information $2.99 SELECTEL OOO 86 (3.9%)
TK 79 (3.7%) Country Code $0 AS-REGRU 79 (3.6%)
ICU 73 (3.5%) Business $1.99 TENCENT-NET-AP-CN 71 (3.2%)
CF 66 (3.1%) Country Code $0 Mail.Ru LLC 64 (2.9%)
TOP 61 (2.9%) General $0.99 THEFIRST-AS JSC The First 61 (2.8%)
GQ 56 (2.6%) Country Code $0 IHOR-AS Ihor Hosting 57 (2.6%)

Detection of Stealer Hosting. Next, we want to assess if
public blocklists detect Stealer infrastructure, and if they do,

what is the time delta between the domain setup and detection.
The time delta can inform us of the current defense efficacy
against Stealers and identify limitations researchers can ad-
dress. We find that 95% of the Stealer hosts appear on the
VT historical blocklist. Surprisingly, 123 hosts do not appear
on public blocklists. We investigated the 123 hosts and found
no notable difference from the detected domains. Figure 6
quantifies the detection timeline for 52.58% of the newly reg-
istered Stealer domains with no prior DNS history (first-time
registration). The plot shows the distribution of the events
for new DNS records (solid blue line), malicious detection
(dotted orange line), and the first operator activities in the
Stealers dataset (dashed green line).

The average and median time for the first observed DNS
record is 15 and two days, respectively. The pDNS data shows
that operators set the DNS records within the first week after
registration for 77% of the domains. We find the average and
median time for detection is 74 and 11 days, respectively.
Notably, the operators continue to access the Stealer hosts
even after detection for an average of 74 days. On the other
hand, 53.26% and 69.03% of the Stealer hosts stop operating
14 and 30 days after appearing on blocklists, respectively. For
43% and 28% of the newly registered panel domains, we find
that they are detected within one week and after two months,
respectively. The remaining Stealer domains go undetected
for an average of 64 days and a median of six days after their
first DNS resolution. Within the undetected domains, 33%
remains undetected for over a month.

We observe, on average, 87 days between registration and
first appearance in the Stealers dataset, with a median of 20
days. MalBeacon integrates with VT to share samples, which
may correlate with the median time to detection (20 days).
Additionally, Figure 7 shows the time window distribution
for the first and last seen activity from the Stealers dataset
centered around the first malicious detection of a panel host
observed in VT. Almost 70% of the panel hosts appear in the
Stealers dataset within seven days or less after their first de-
tection. In summary, operators provision Stealer hosts within
two weeks. They appear on blocklists within 74 days on av-
erage. Operators continue to access the Stealer hosts for an
average of 74 days after their detection.
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Table 6: Networks resolving stealer domains by country for residential, business, and government networks.

Client Networks Residential Networks Business Networks Government Networks
Type Count (%) Countries Count (%) Vol. Days Vol/Day Countries Count (%) Vol. Days Vol/Day Countries Count (%) Vol. Days Vol/Day

Hosting 67,958 (40.5) China 4,187 (14.1) 607,282 473 1,283 United States 25,315 (92.8) 1,441,020 500 2,882 United States 113 (54.6) 40,161 328 122
ISP/Telco 37,463 (22.3) Morocco 3,313 (11.2) 47,854 351 136 Vietnam 619 (2.2) 2,004,091 348 5,758 Canada 14 (6.7) 405 25 16
Residential 29,595 (17.6) India 2,556 (8.6) 135,815 466 291 United Kingdom 309 (1.1) 1,652,777 420 3,935 China 8 (3.8) 604 139 4
Business 27,269 (16.1) United States 2,293 (7.7) 195,714 481 406 S. Korea 152 (0.5) 18,798 276 68 Italy 6 (2.9) 265 60 4
Education 5,143 (3.0) Iran 1,479 (5.0) 16,929 429 39 India 117 (0.4) 5,399 287 19 Indonesia 5 (2.4) 7 6 1
Government 207 (0.1) Mexico 1,410 (4.7) 75,469 403 187 Nigeria 108 (0.4) 7,615 212 36 Israel 4 (1.9) 235 57 4
Health 188 (0.1) Indonesia 1,360 (4.6) 48,557 352 137 China 69 (0.2) 182,895 361 506 India 4 (1.9) 4,264 80 53

Assessing Victim Targeting. We estimate the number of
targeted victims to understand the impact of Stealers. To
get an accurate estimate, we would require direct access to
the C&C server, which we do not have. Instead, we use the
pDNS dataset to estimate the number of potential infections
by analyzing the DNS resolutions. We quantify the number
of DNS resolutions by network types and countries during
the active time frame of each domain in the Stealers dataset.
We define a network by the EDNS Client Subnet (ECS) [59],
[60] found in the DNS resource records for clients resolving
domains above the recursive, where the DNS recursive query
the upper DNS hierarchy (i.e., TLDs and authoritative name
servers). It is important to note that the results are associated
with subnets, not IP addresses, which can underestimate the
number of targeted victims. Moreover, we base the analysis
on potential, not confirmed, infections.

We observe a total of 255,925 unique networks, but we
can only label 167,989 (65.6%) of them. Table 6 presents the
results. The table has four parts, namely the Client Networks,
Residential Networks, Business Networks, and Government
Networks. The Client Networks is a breakdown of all 167,989
labeled networks. The Residential Networks category is a
breakdown of the networks that belong to residential subnets
grouped by country. The Business Networks is a breakdown
of the labeled business subnets grouped by country. The Gov-
ernment Networks category is a breakdown of the labeled
government subnets grouped by country. For each network
label, we show the network count (Count), lookup volume
(Vol), days queried (Days), and lookup volume rate (Vol/Day).

We find that 40.5% of the resolutions originate from Host-
ing networks. These networks appear to be associated with
virtual private server (VPS) providers, cloud providers (i.e.,
AWS, OVH, Azure), and content delivery networks (CDNs),
see Table 10 in Appendix A. The rDNS records show that
VPS and cloud networks account for virtual private network
(VPN) services. Moreover, a portion of cloud networks and
most of the CDNs appear to be internet scanners or security
tools. These observations align with prior works on mali-
cious domain sinkhole analysis [61]. However, many hosting
networks are unlikely to be infected clients.

We observe ISP/Telco as the second and Residential as the
third most popular networks. The residential networks are
more likely to be victims since ISPs designate the space for
home users. For the Residential Networks, we observe that
Chinese clients make up 14.1% of the potential infections,

followed by Morocco (11.2%), India (8.6%), and the United
States (7.7%). Notably, we find 207 government networks
resolving Stealer domains. We took a closer look at the 113
U.S. government networks and found a mix of federal (24),
state (32), and local (58) government networks. At the federal
level, we found high-profile government networks like the
U.S. Social Security Administration (4), the U.S. House of
Representatives (2), and the U.S. Senate (2).

Investigating further, we found a total of 107 DNS re-
sponses for 27 different Stealer domains from August 2019
to November 2020. More specifically, for the U.S. Senate
network, we observe a total of 12 distinct resolutions for nine
domains from January 2020 to July 2020. These DNS reso-
lutions originate from what appear to be the DNS recursive
servers for the U.S. Senate network. These resolutions suggest
that there may be more infections because the DNS resolu-
tions are typically cached. Nevertheless, the sensitivity of
these government networks, including the U.S. Social Secu-
rity Administration, demonstrate the far reach and impact of
Stealers. Finally, the infection period for all 28 domains ex-
tends over a year, giving operators ample time to execute other
capabilities (keylogging, drop malware, and reverse shell).

Takeaway-2: We find Stealer infrastructure requires mini-
mal hosting resources and abuse services such as free ccTLDs
and cloud-fronting. Moreover, on average, public blocklists
detect Stealer domains 74 days after the initial registration
with a median of 11 days. This detection gap gives Stealers
ample time to infect and harvest credentials from various net-
works. Their long-lived activities may be problematic, as they
allow operators time to exercise other malware capabilities
(i.e., install ransomware [17]).

5.2 Characterization of Operators
The Stealers dataset provides a unique vantage point to char-
acterize how Stealer operators manage their botnet using the
C&C panels. We take a closer look at how operators interact
with the C&C panels through their devices and shed light on
their tactics.
Device and Network Characteristics. Characterization of
the device and network association can inform researchers
about common patterns cybercriminals use. These characteris-
tics can help build heuristic-based defenses that profile device
and network properties to flag suspicious and unauthorized
access. On average, operator devices access panels using 6.66
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Figure 8: The diurnal analysis for the top 20 countries of op-
erator device activity (dark more active and light less active).

IP addresses that belong to 1.95 autonomous systems (ASNs).
The largest number of IP addresses associated with an oper-
ator device is 230, belonging to nine ASNs. Moreover, the
standard deviation for operator device IP addresses is almost
double the average (12.7). When looking at how operators ac-
cess their C&C panels, we find, on average, operator devices
access 1.62 unique panel instances, 1.51 unique domains, and
manage 1.04 malware families. The operator device with the
most panel instances accesses 57 unique panels hosted on 42
distinct domains. We take a closer look at this particular exam-
ple and find that the 42 distinct domains use algorithmically
generated domains (DGA).

After applying the cookie merging algorithm (Algorithm 1),
we find operator devices associated with 1.17 cookie IDs on
average. The operator device with the most cookies has 55
unique cookie IDs. For over a month, this device used the
same operating system, browser, and browser version to ac-
cess the same panel with 55 unique non-overlapping cookies,
suggesting cookie churn.

In the entire Stealers dataset, 465 (10.14%) operator de-
vices have more than one cookie ID. We find, on average, 5.7
more IP address associations for these devices. Cookie merg-
ing (Algorithm 1) helped us build a complete profile for these
operator devices and uncover related IP addresses and ASN
associations that we would have missed otherwise. Cookie
churn fragments access patterns, and we must address the
churn to build a more accurate device profile. Additionally,
operator device profiles are diverse and can help distinguish
between operators.

Networks Access Patterns. We analyze the network types,
the use of proxies, and the localized diurnal access times to in-
vestigate the access patterns. In total, operator networks origi-
nate from 135 different countries with different network clas-
sifications. The network classifications include ISP (11.55%),
ISP-Mobile (55.14%), and hosting networks (31.71%). Inter-
estingly, over half of the operator networks are classified as
ISP-Mobile. The bar graph in Figure 8 presents the top 20

countries for operator device networks. Most ISP (80.32%)
and ISP-Mobile (84.72%) networks are located in Nigeria.
Revealingly, 99% of the internet broadband in Nigeria relies
on mobile wireless connections [62]. Using the residential and
mobile proxy dataset [40], [41], we intersect the timestamp
and IP address of each operator device and find 882 (4.04%)
mobile proxy records matching against the operator IP ad-
dresses. However, omitting the timestamp field to only match
against the IP, we find 1,785 (8.43%) and 5,667 (26.76%)
matches for residential and mobile proxies, respectively.

Table 7: Top 10 countries of operator IP addresses and their
proxy and tor networks.

Country IPs Mobile Proxy (%) Residential Proxy (%) Tor Exit Node (%)

Nigeria 11,375 4,326 (38.03%) 1,181 (10.38%) 0 (0%)
United States 1,936 161 (8.32%) 36 (1.86%) 15 (0.77%)
Great Britain 908 153 (16.85%) 65 (7.16%) 7 (0.77%)
South Korea 812 170 (20.93%) 14 (1.72%) 0 (0%)
Germany 496 40 (8.06%) 47 (9.47%) 10 (2.01%)
Netherlands 418 33 (7.90%) 31 (7.41%) 5 (1.20%)
Turkey 291 19 (6.52%) 16 (5.50%) 0 (0%)
Canada 279 23 (8.24%) 24 (8.60%) 3 (1.07%)
France 231 28 (12.12%) 21 (9.09%) 2 (0.86%)
Norway 222 4 (1.80%) 4 (1.80%) 0 (0%)

Furthermore, we analyze the number of Tor exit nodes as-
sociated with the operator networks and present the overlap
per country in Table 7. Nigerian IP addresses make up about
53.73% of the operator networks, and 42.55% were observed
as proxy networks. Additionally, the top networks classified
as hosting are also strongly associated with VPN services.
For example, we find most hosting networks to be located
in the US, Great Britain, Germany, and the Netherlands, and
the top 3 ASNs are: AS9009 M247 Ltd, AS198605 AVAST
Software s.r.o. and AS205016 HERN Labs belong to VPN
services [63]–[65]. We crosschecked the hosting networks
with IP intelligence feeds and found that IPRegistry [36]
labels them as VPN networks. These findings suggest that
Stealer operators use proxy networks like residential, mo-
bile, Tor, and traditional VPN services when accessing the
management panel. These findings demonstrate that opera-
tor profiling can be involved and naively using the operator
networks to attribute cybercriminals can be inaccurate.

Operator Device Diurnality. Diurnal analysis can provide
another perspective into the nature of operator device access.
We can use the analysis as an additional confluence signal for
the geographical location. We quantify the access frequency
for only ISP-based IP addresses not found on the proxy lists.
The time zones for the diurnal analysis are localized to the
geographical region associated with the operator’s IP address.
Figure 8 presents the diurnal access patterns for ISP-based
(Mobile and Landline) operators. We present the top 20 coun-
tries, which account for 95.60% of the ISP-based operator
device IP addresses in the dataset, and make up 63.70% of
the IP addresses of the entire dataset. The time zone localiza-
tion shows higher activity on weekdays than the weekends
for most countries. For example, the Nigeria diurnal profiles
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have double the weekday activity compared to the weekends.
The results suggest that most operator devices are more

active on weekdays regardless of the potential victim con-
nections. Those diurnal activities can imply that operators
manage Stealer as a full-time job as they are mostly con-
necting during weekdays. The higher activities observed on
the weekend for some regions (Russia, Spain, Nambia) can
suggest these operators use proxy networks and do not neces-
sarily reside there. More importantly, when combined with
other signals (device fingerprint, network, and access pro-
files), these observations can provide higher confidence in the
operator device profiles.

Takeaway-3: Operators use proxy services ranging from
traditional VPNs to mobile and residential proxies to Tor
networks. In particular, the mobile and residential proxies can
cause misdirection when characterizing operator profiles. The
cookie IDs are reasonably persistent with the majority of the
devices in the dataset, but for some operators, private browsing
results in ephemeral cookie IDs. The diurnal analysis suggests
that operators administer their botnet as a full-time job.

5.3 Operator Affiliations
We extend our analysis to understand operators’ affiliations
based on shared C&C panel access, i.e., distinct operator de-
vices accessing the same C&C panel. Specifically, we apply
the bipartite graph analysis from Section 3.3 and construct a
global graph for the entire dataset. We extract connected com-
ponents and study each component as an individual affiliation,
which we define as an independent Stealer service provider.
Affiliations. The bipartite analysis found 2,449 connected
components (clusters). Figure 9 shows the distribution for all
nodes, operator device nodes, and panel nodes for the clusters.
The cluster size ranges from two to 449 nodes. We find that
98% of clusters have less than 15 nodes. The top 0.4% of
clusters have 50 or more nodes. Table 8 summarizes the top
five largest clusters. The Table presents the attributes for days
seen, operator device nodes, and panel nodes (infrastructure).
For example, the largest cluster has 285 total nodes, 127 op-
erator device nodes, and 157 panel nodes observed over 689
days. The 127 operators are associated with 1,382 distinct
IP addresses, and 911 of the IP addresses are potential prox-
ies. The 157 panels are associated with 92 domains and three
Stealer families. Note that these affiliations make up several
distinct operator devices and C&C panels. The majority of
the Stealer services are small and sparse; however, the top
1% appears to be more connected and active.
Influential Operators. Next, we examine the node degree
to quantify the panel-to-operator ratio. Figure 10 presents the
node degree distribution in the clusters. We observe a max-
imum of 57 distinct panel nodes connected to one operator
node. On the other hand, we find 37 distinct operator nodes
connected to a single panel node. Among all operators, we
want to identify the most influential operator for each cluster

by using graph centrality analysis. Figure 11 presents a box-
plot for the top 25 largest clusters. Each boxplot represents
one cluster sorted from largest (leftmost) to smallest (right-
most). We find that most clusters have one or two outliers
with high centrality values (>0.4). On the other hand, the ma-
jority of operators in each cluster have a centrality value of
less than 0.4. This finding suggests that operators with high
centrality values play an administrator role for the cluster
(service provider). Furthermore, this suggests that influential
operators may be the service providers, and the remaining
operators are customers. We base this assumption on the fact
that an operator device with access to many C&C panels has
more credentials than an operator device with access to a few
C&C panels in the same cluster.

Takeaway-4: The affiliation analysis suggests that the
largest 1% Stealer service providers account for most of the
activities. Moreover, each service provider has one or two
influential operators with more privileged access, suggest-
ing those operators play an administrative role. Our analysis
shows a stratified organization per cluster with different privi-
leges, which supports our operator model role in Figure 1.

6 Analysis of Top Clusters: Services & Profits

Expanding on the top service providers from the previous
section, we dive into the top five clusters and characterize their
growth, operational cost, revenue, and potential infections.

6.1 Cluster Lifespan and Growth
Recall that Table 8 presents the attributes for the five largest
clusters. The Table presents the number of days seen for each
cluster based on the activities in the Stealers dataset. The
most active clusters are C1, followed by C2 and C3, respec-
tively. We quantified the growth of each service provider by
analyzing the number of new operators joining each cluster.
We found that, on average, one new operator joins the cluster
weekly. We visualize the growth in Figure 12. The growth is
not uniform, and we find some weeks with zero operators join-
ing and some weeks with up to seven new operator devices
joining. This finding signifies consistent growth, particularly
for C1, which suggests it is the most stable service provider.

Next, we look at the operator access networks. Operators
per cluster exhibit a similar access trend as the overall analysis
from the previous section, where operators rely on proxies as
shown in Table 8. In particular, 66%, 70%, 72%, 54%, and
61% of observed operator IP addresses for clusters 1-5 are
proxies, respectively. Interestingly, the influential operators in
each cluster have distinct proxy access patterns. For example,
in C1, the operator uses only US-based proxy networks. In
contrast, in C2, the operator uses proxies in three different
countries (US, NL, UK). On the other hand, for C3, the op-
erator uses mobile proxies based in Nigeria, and C4 and C5
operators use network proxies based in Switzerland. Notably,
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Table 8: Coarse estimates for Stealer services for the top five components. Estimates are in US Dollar (USD).

Name Size Days Operators Infrastructure Infected Networks One-Off Ongoing Monthly Estimates
Seen Count IPs Proxy Panels Domains DDNS Hosts ASNs All Residential Cost Hosting Revenue Profit Margin

C1 285 689 127 1,382 911 157 92 3 155 34 14,247 6,795 $5,481.15 $923.45 $11,834 $10,910.55 92.2%
C2 84 468 15 99 69 68 38 1 88 76 3,931 1,076 $595.25 $199.88 $5,440 $5,240.12 96.33%
C3 72 418 37 346 257 34 19 0 35 11 1,997 1,051 $963.3 $37.45 $2,579 $2,541.55 98.55%
C4 68 332 24 167 91 43 22 0 158 47 29 4 $121.61 $638.05 $3,440 $2,801.95 81.45%
C5 57 415 26 227 139 30 21 0 65 25 23,013 8,153 $2,591.97 $88.94 $1,930 $1,841.06 95.39%
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Figure 12: Operator growth per cluster over one year.

for C2, the operator’s proxy IP addresses appear static because
the operator reuses them for 200 days.

6.2 Analysis of Operational Cost and Impact

The growth results for the top clusters motivated us to in-
vestigate each cluster’s cost, revenue, and potential victims.
Recall that the scope of our revenue estimate is to quantify
Stealer services monetization, and we emphasisize that the
sale proceeds of harvested credentials are out of scope.

Cost and Revenue Modeling. Our cost estimate model as-
sumes service providers operate independently and incur two
distinct costs, namely, one-off and ongoing costs. One-off
costs (annually) include the domain purchase and the Stealer
kit license, whereas ongoing costs include hosting. To be con-
servative, we assume zero cost if the Stealer kit is leaked
or available as open-source. Moreover, we assume multiple
licenses of Stealer kits are required per FQDN because devel-

opers license per domain. We map the panel IP address to a
hosting provider using IP intelligence. We then manually col-
lect the hosting prices for shared hosting, virtual private server
(VPS), and dedicated server. We exclude cloud-fronted hosts
because we cannot identify their hosting provider. We use the
prices per Stealer family in Table 1 to estimate the revenue
for hosted Stealer panels (service offering). We assume the
revenue for the cluster is generated by offering hosted Stealer
services. For example, C1 has three malware families, namely
LokiBot, AgentTesla, and Formbook. We multiply the lowest
license cost from Table 1 by the number of panel instances
and sum them up for revenue of $11,834 per month.

Comparing Cost, Revenue, and Profits. Table 8 summa-
rizes the cost (one-off and ongoing), revenue, and profit mar-
gin. We find the range of the one-off cost between $121.61
and $5,481.15 per year. Notably, C4 has a relatively smaller
one-off cost because C4 only hosts LokiBot malware fam-
ily, which does not have a license cost (leaked source). We
find the range for the ongoing cost per month to be between
$37.45 and $923.45. C3 has the lowest ongoing cost because
most domains are cloud-fronted, and we could not identify
their hosting providers. The most expensive operation is C1,
where operators use 155 distinct hosts to serve 157 panel
instances. This also supports our observation of being the
most stable service from the growth analysis. We find the
revenue to range between $1,930.0 and $11,834 per month.
C1 has the largest operational revenue but a relatively lower
profit margin. C1 offers three different malware family panel
hosting, including LokiBot, Formbook, and AgentTesla. In
contrast, the other clusters only offer LokiBot and Formbook
panel hosting. This suggests that Stealer service providers
can be highly profitable with margins that range between
81.45% and 98.55%.

Surprisingly, C2 has half the number of hosts, but their
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monthly cost is about 10% of C1. C2’s low hosting cost can be
attributed to 56 out of 88 hosts appearing to be compromised
residential and business devices. These networks appear com-
promised since their rDNS records map to ISP customers
(business and residential) but do not appear in the proxy
dataset. Most of these networks (54 out of 76 ASNs) point to
one domain 2. This domain was active for two months, from
Nov’19 to Jan’20, and was associated with 59 IP addresses
that belong to 54 distinct ASNs in 21 countries. These results
suggest that C2 uses globally infected hosts to offer panel
hosting services and is relatively less stable in growth than
C1. Conversely, we find that C4 has 71% of its infrastructure
geographically hosted in Russia, with higher infrastructure
costs than C2.

Potential Infected Hosts. To further compare the service
providers, we take a closer look at their potential victims
using the pDNS dataset. In Table 8 under Infected Networks,
we present the number of unique subnets from ECS [59],
[60]. Recall that our earlier analysis suggested that hosting
networks are less likely to be infected victims; therefore, we
only quantify the residential networks. The residential IP
addresses provide a lower bound for the number of potentially
infected machines. We find C5 to have the largest number of
potential infections with 8,153 unique residential networks,
followed by C1 with 6,795 networks. Although C4 appears
to have fewer potential infections, we attribute it to the lack
of coverage in the pDNS.

Takeaway-5: The top service providers appear to operate
for over a year, have consistent growth, and enjoy over 90%
profit margins ranging from $2000 to $11,000 per month.
Stealer service providers use varying hosting tactics, which
is reflected in their service stability based on the growth and
lifespan analysis. The hosting infrastructure varies from in-
fected hosts to geographically concentrated to geographically
distributed hosting. These observations show that no two
Stealer service providers are the same.

7 Summary and Discussion

We set out to investigate the Stealers ecosystem by answering
the following three research questions:

RQ1: How do Stealers contribute to cybercrime?
Stealers play a significant role in the credential theft lifecycle
and contribute to the credential harvesting phase. Stealers
have a mature and competitive market that lowers the finan-
cial and technical barrier for cybercriminals. Hosted Stealer
services require little upfront cost and can offer a large return
on investment from the sale of credentials.

RQ2: How do Stealers operate on the Internet? Stealers
require minimal hosting resources and abuse services such
as free ccTLDs and cloud-fronting. Stealer service providers

2tranpip[.]com

use varying hosting tactics, which is reflected by their service
stability, i.e., growth. The hosting infrastructure varies from
infected hosts to geographically concentrated and distributed
hosting. Public blocklists detect Stealer domains on average
74 days after initial domain registration. This detection gap
gives Stealers ample time to infect and harvest credentials
from various networks. Their long-lived activities may be
problematic, as they allow operators time to exercise other
malware capabilities (i.e., install ransomware).

RQ3: What are the nature and tactics of Stealer opera-
tors and their service offerings? Operators use proxy ser-
vices ranging from traditional VPNs to mobile and residential
proxies to Tor networks. The mobile and residential proxies
can cause misdirection when characterizing operator profiles.
The diurnal analysis suggests that operators administer their
botnet as a full-time job. The affiliation analysis suggests that
the largest 1% Stealer service providers account for most of
the activities. Each service provider has one or two influen-
tial operators with more privileged access, suggesting those
operators are administrators. Our analysis shows a stratified
organization per cluster. These observations show that no two
Stealer service providers are the same, and they appear to
operate independently (competitors).

Actionable Insights. How can researchers and law enforce-
ment act on these insights? For researchers, we empirically
document that Stealers have defensive tactics to prevent ac-
tive scanning and identification of C&C panels. Researchers
can incorporate this information to build a tailored internet-
wide scanning system to find C&C panels. For example, a
scanner can scan a target host twice, once to trigger a block
and a second time to check if the connection is blocked. This
approach turns the Stealer defense system against itself and
allows researchers to detect possible C&C panel hosts. Ad-
ditional insights, such as geographical distribution of infras-
tructure, ASN association, and infrastructure characteristics,
can inform researchers to design and evaluate adequate active
Stealer infrastructure detectors.

Law enforcement can apply our operator device profil-
ing techniques to characterize cybercriminals accurately. We
show operators use private browsing and diverse proxy ser-
vices to masquerade their fingerprints. However, law enforce-
ment can build a more accurate device timeline and C&C
panel access as forensic evidence using our cookie churn
merging algorithm and diurnal analysis. Moreover, the affilia-
tion analysis can identify cybercriminal groups and pinpoint
their top active participants, which can help law enforcement
efficiently go after influential operators. Similarly, our find-
ings can help researchers to identify active Stealer infrastruc-
ture and prioritize their cleanup. For example, researchers
and law enforcement can collaborate to takedown domains
with large clusters of operator activities. Lastly, our infection
analysis can lead law enforcement to investigate sensitive
networks with potential Stealer infections.

USENIX Association 32nd USENIX Security Symposium    5319



Operator Attribution Attribution can be of two types,
namely, virtual or physical. Physical attribution requires ju-
risdiction and legal access to private information. Addition-
ally, an ethical aspect of physical attribution must adhere to
some acceptable policies and norms. This work focuses on
virtual attribution to identify operator affiliation, albeit these
techniques are meant to complement and enhance existing
methods instead of being used independently. Virtual attri-
bution deals with identifying and tracking different threat
groups based on indicators of compromise (IoC). However,
we caution the reader that attributing to a specific group is
complex, and we avoid making speculative judgments. For
instance, our dataset shows that a significant number of ac-
tivities come from Nigeria, but this can be misleading for
a forensic analyst because it does not represent the whole
picture. Although this observation is suggestive, we observe
that many Nigerian operator networks are mobile or residen-
tial proxies. Enigmatically, these proxies appear to be part of
anonymity networks (similar to Tor), where participants may
be willingly or unknowingly tunneling traffic [40], [41]. Nev-
ertheless, law enforcement could incorporate our techniques
to improve virtual and physical attribution.

7.1 Limitations and Threats to Validity

The operational nature of the Stealer dataset can affect the
accuracy of our results. The tracking pixel may only appear
on some panel pages and therefore miss activities from op-
erator devices. Additionally, since the data collection relies
on running malware in a sandbox, the malware binary collec-
tion and analysis can create a skewed view of the malware
families. However, since our dataset is large (hundreds of
thousands of records), we can assume the data is statistically
representative of the overall population. The data validation
analysis shows that operators may spoof their UA, use private
browsing, or use multiple devices. It is difficult, if not impos-
sible, to associate a virtual entity with a physical entity based
on the current dataset. Nevertheless, we make conservative
assumptions about the operators by framing the analysis as
operator devices and extensively validating the dataset.

Another possible limitation is the effect of network ad-
dress translated (NAT) traffic and aggregated pDNS data from
recursive servers. These artifacts can impact our infection
estimation and operator count. Additionally, operator network
proxy use can create ambiguities about the geographical re-
gions of the operators. For the cost and revenue estimates, the
hosting and service offerings prices are based on the time this
paper was written; therefore, the prices might have changed
over the past years. Nevertheless, our profits estimate should
serve as a lower bound for Stealer services.

7.2 Related Work
Several studies have analyzed different cybercrime opera-
tions to understand their incentives. These cybercrimes in-
clude pharmaceutical spam [54], [66], spam botnets [9], spam
life-cycle [5], targeted attacks [67], click-fraud bots [68], ran-
somware [69], and RATs [70]. Moreover, prior work [71] has
explored cybercrime business relationships and their collabo-
ration. Franklin et al [12] investigated the financial aspect of
cybercrime by analyzing transactions on IRC servers. Study-
ing cybercrime operators requires various techniques that
include honeypots [72], internet-wide scanning [61], [73],
seizing malware infrastructure [9], [11], [74], tracking un-
derground activities [2], [13], analyzing recovered creden-
tials [6], and a combination of diverse data sources [71], [75].
Other works relied on honey tokens to study URL shortening
services [47], email typosquatting [48], social media manip-
ulation [53], detect intrusions [50], [51], and vet malicious
browser extensions [52]. These works provide a valuable
perspective into cybercrime tactics.

In contrast, our work examines a large commodity Stealers
dataset from the operator’s interface. Our work provides the
first unique perspective into the inner workings of Stealer
services and their operators through pixel-tracking embedded
in artificial stolen credentials. Pixel-tracking allows us to
quantify and distill essential insights about the activities of
Stealer operators that were not possible before. Our work
leverages this dataset to analyze the nature, trends, tactics,
and revenue of Stealers and their operators. Compared to
prior work [76] on Stealer panels, our work provides a more
holistic and in-depth analysis of the Stealer ecosystem.

8 Conclusion

Our empirical analysis of Stealers provides a unique per-
spective on the nature of their ecosystem. Our research ques-
tions explored several aspects of the Stealer ecosystem, in-
cluding how they are used for cybercrime, how they oper-
ate on the internet, and what their operators’ tactics are. We
find much of the Stealers infrastructure to be long unde-
tected, which gives operators time to infect the compromised
networks with more severe threats like ransomware [17].
The threat posed by Stealers is amplified by the low barrier
to entry that Stealer service providers enable. The Stealer
service providers enjoy healthy profits, financially driving
other competition and further fueling this ecosystem. We
believe additional work is needed to disincentive and curb
the use of Stealers. Finally, in the spirit of scientific re-
producibility, we make six months of the Stealers dataset
along with the cookie merging code available at: https:
//github.com/Astrolavos/stealer-sec23
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Table 9: Summary of panel installation, encryption functions,
admin authentication, and supported admin commands based
on source code analysis.

Malware
Family

Install
Type

Encryp Panel Bot
CommandsAlgo. Auth.

Neutrino Scripted user/passwd DDoS, shell, keylogger,
DNS spoof, update

LokiBot Guided
AES256-ECB,
RC4

user/passwd,
UA, Captcha

load/drop exec, keylogger,
screenshot, update, uninstall

AZORult Manual 1-Byte XOR only passwd
Amadey Manual user/passwd drop/load exec., RAT

BlackNet Guided
user/passwd,
Captcha, 2FA

DDoS, upload, msg, visit page,
mail, keylogger, shell, uninstall

Table 10: Top 10 hosting networks querying stealer domains.

Hosting AS Networks

AMAZON-AES 30,705
AMAZON-02 12,515
CLOUDFLARENET 5,890
MICROSOFT-CORP-MSN-AS-BLOCK 4,708
OVH OVH SAS 1,623
DIGITALOCEAN-ASN 728
MAXIHOST 543
M247 M247 Ltd 536
SOFTLAYER 461
UK2NET-AS UK-2 Limited 332

Table 11: Top panel operator device types and operating sys-
tems.

Desktop Mobile
OS Ver. Count (%) OS Ver. Count (%)

Windows
10 2,148 (46.84)

Android

9 22 (0.48)
7 1,112 (24.25) 8.1 18 (0.39)

8.1 893 (19.47) 7 17 (0.37)

MacOS
10.14 47 (1.02) 8 9 (0.19)
10.15 29 (0.63) 10 9 (0.19)
10.13 26 (0.56) 6 6 (0.13)

Linux All 50 (1.10) iOS 12 8 (0.17)
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Table 12: Top 10 user agents and related statistics.

User Agent OS Browser Cookie IDs C&C Update (Days)

Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.100 Safari/537.36 Windows 7 Chrome 75.0.3770.100 116 119 22.50
Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.130 Safari/537.36 Windows 10 Chrome 79.0.3945.130 112 110 24.15
Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:68.0) Gecko/20100101 Firefox/68.0 Windows 10 Firefox 68.0 112 140 36.32
Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:69.0) Gecko/20100101 Firefox/69.0 Windows 10 Firefox 69.0 111 113 47.23
Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.142 Safari/537.36 Windows 10 Chrome 75.0.3770.142 109 120 53.54
Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.100 Safari/537.36 Windows 10 Chrome 75.0.3770.100 108 122 21.74
Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/73.0.3683.103 Safari/537.36 Windows 10 Chrome 73.0.3683.103 95 88 28.57
Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/74.0.3729.169 Safari/537.36 Windows 10 Chrome 74.0.3729.169 88 109 22.31
Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:70.0) Gecko/20100101 Firefox/70.0 Windows 10 Firefox 70.0 82 96 24.95
Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.142 Safari/537.36 Windows 7 Chrome 75.0.3770.142 80 72 17.46
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